Functionally idiomatic FFT
up vote
2
down vote
favorite
I've written the this radix-2 FFT with the goal of making it functionally idiomatic without sacrificing too much performance:
let reverse x bits =
let rec reverse' x bits y =
match bits with
| 0 -> y
| _ -> ((y <<< 1) ||| (x &&& 1))
|> reverse' (x >>> 1) (bits - 1)
reverse' x bits 0
let radix2 (vector: Complex) (direction: int) =
let z = vector.Length
let depth = floor(Math.Log(double z, 2.0)) |> int
if (1 <<< depth) <> z then failwith "Vector length is not a power of 2"
// Complex roots of unity; "twiddle factors"
let unity: Complex =
let xpn = float direction * Math.PI / double z
Array.Parallel.init<Complex> (z/2) (fun i ->
Complex.FromPolarCoordinates(1.0, (float i) * xpn))
// Permutes elements of input vector via bit-reversal permutation
let pvec = Array.Parallel.init z (fun i -> vector.[reverse i depth])
let outerLoop (vec: Complex) =
let rec recLoop size =
if size <= z then
let mid, step = size / 2, z / size
let rec inrecLoop i =
if i < z then
let rec bottomLoop idx k =
if idx < i + mid then
let temp = vec.[idx + mid] * unity.[k]
vec.[idx + mid] <- (vec.[idx] - temp)
vec.[idx] <- (vec.[idx] + temp)
bottomLoop (idx + 1) (k + step)
bottomLoop i 0
inrecLoop (i + size)
inrecLoop 0
recLoop (size * 2)
recLoop 2
vec
outerLoop pvec
The outerLoop
segment is the biggest nested tail-recursive mess I have ever written. I replicated the algorithm in the Wikipedia article for the Cooley-Tukey algorithm, but the only functional constructs I could think to implement using higher-order functions result in massive hits to both performance and memory efficiency. Are there other solutions that would yield the same results without resulting in massive slow-downs, while still being idiomatic?
functional-programming f# fft
New contributor
add a comment |
up vote
2
down vote
favorite
I've written the this radix-2 FFT with the goal of making it functionally idiomatic without sacrificing too much performance:
let reverse x bits =
let rec reverse' x bits y =
match bits with
| 0 -> y
| _ -> ((y <<< 1) ||| (x &&& 1))
|> reverse' (x >>> 1) (bits - 1)
reverse' x bits 0
let radix2 (vector: Complex) (direction: int) =
let z = vector.Length
let depth = floor(Math.Log(double z, 2.0)) |> int
if (1 <<< depth) <> z then failwith "Vector length is not a power of 2"
// Complex roots of unity; "twiddle factors"
let unity: Complex =
let xpn = float direction * Math.PI / double z
Array.Parallel.init<Complex> (z/2) (fun i ->
Complex.FromPolarCoordinates(1.0, (float i) * xpn))
// Permutes elements of input vector via bit-reversal permutation
let pvec = Array.Parallel.init z (fun i -> vector.[reverse i depth])
let outerLoop (vec: Complex) =
let rec recLoop size =
if size <= z then
let mid, step = size / 2, z / size
let rec inrecLoop i =
if i < z then
let rec bottomLoop idx k =
if idx < i + mid then
let temp = vec.[idx + mid] * unity.[k]
vec.[idx + mid] <- (vec.[idx] - temp)
vec.[idx] <- (vec.[idx] + temp)
bottomLoop (idx + 1) (k + step)
bottomLoop i 0
inrecLoop (i + size)
inrecLoop 0
recLoop (size * 2)
recLoop 2
vec
outerLoop pvec
The outerLoop
segment is the biggest nested tail-recursive mess I have ever written. I replicated the algorithm in the Wikipedia article for the Cooley-Tukey algorithm, but the only functional constructs I could think to implement using higher-order functions result in massive hits to both performance and memory efficiency. Are there other solutions that would yield the same results without resulting in massive slow-downs, while still being idiomatic?
functional-programming f# fft
New contributor
I have no knowledge of F# and I'm asking this only out of curiosity: is this idiomatic F#?
– chb
7 hours ago
1
Is the indentation correct? From looking at the code I have a feeling yourbottomLoop
is never called…
– dumetrulo
6 hours ago
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I've written the this radix-2 FFT with the goal of making it functionally idiomatic without sacrificing too much performance:
let reverse x bits =
let rec reverse' x bits y =
match bits with
| 0 -> y
| _ -> ((y <<< 1) ||| (x &&& 1))
|> reverse' (x >>> 1) (bits - 1)
reverse' x bits 0
let radix2 (vector: Complex) (direction: int) =
let z = vector.Length
let depth = floor(Math.Log(double z, 2.0)) |> int
if (1 <<< depth) <> z then failwith "Vector length is not a power of 2"
// Complex roots of unity; "twiddle factors"
let unity: Complex =
let xpn = float direction * Math.PI / double z
Array.Parallel.init<Complex> (z/2) (fun i ->
Complex.FromPolarCoordinates(1.0, (float i) * xpn))
// Permutes elements of input vector via bit-reversal permutation
let pvec = Array.Parallel.init z (fun i -> vector.[reverse i depth])
let outerLoop (vec: Complex) =
let rec recLoop size =
if size <= z then
let mid, step = size / 2, z / size
let rec inrecLoop i =
if i < z then
let rec bottomLoop idx k =
if idx < i + mid then
let temp = vec.[idx + mid] * unity.[k]
vec.[idx + mid] <- (vec.[idx] - temp)
vec.[idx] <- (vec.[idx] + temp)
bottomLoop (idx + 1) (k + step)
bottomLoop i 0
inrecLoop (i + size)
inrecLoop 0
recLoop (size * 2)
recLoop 2
vec
outerLoop pvec
The outerLoop
segment is the biggest nested tail-recursive mess I have ever written. I replicated the algorithm in the Wikipedia article for the Cooley-Tukey algorithm, but the only functional constructs I could think to implement using higher-order functions result in massive hits to both performance and memory efficiency. Are there other solutions that would yield the same results without resulting in massive slow-downs, while still being idiomatic?
functional-programming f# fft
New contributor
I've written the this radix-2 FFT with the goal of making it functionally idiomatic without sacrificing too much performance:
let reverse x bits =
let rec reverse' x bits y =
match bits with
| 0 -> y
| _ -> ((y <<< 1) ||| (x &&& 1))
|> reverse' (x >>> 1) (bits - 1)
reverse' x bits 0
let radix2 (vector: Complex) (direction: int) =
let z = vector.Length
let depth = floor(Math.Log(double z, 2.0)) |> int
if (1 <<< depth) <> z then failwith "Vector length is not a power of 2"
// Complex roots of unity; "twiddle factors"
let unity: Complex =
let xpn = float direction * Math.PI / double z
Array.Parallel.init<Complex> (z/2) (fun i ->
Complex.FromPolarCoordinates(1.0, (float i) * xpn))
// Permutes elements of input vector via bit-reversal permutation
let pvec = Array.Parallel.init z (fun i -> vector.[reverse i depth])
let outerLoop (vec: Complex) =
let rec recLoop size =
if size <= z then
let mid, step = size / 2, z / size
let rec inrecLoop i =
if i < z then
let rec bottomLoop idx k =
if idx < i + mid then
let temp = vec.[idx + mid] * unity.[k]
vec.[idx + mid] <- (vec.[idx] - temp)
vec.[idx] <- (vec.[idx] + temp)
bottomLoop (idx + 1) (k + step)
bottomLoop i 0
inrecLoop (i + size)
inrecLoop 0
recLoop (size * 2)
recLoop 2
vec
outerLoop pvec
The outerLoop
segment is the biggest nested tail-recursive mess I have ever written. I replicated the algorithm in the Wikipedia article for the Cooley-Tukey algorithm, but the only functional constructs I could think to implement using higher-order functions result in massive hits to both performance and memory efficiency. Are there other solutions that would yield the same results without resulting in massive slow-downs, while still being idiomatic?
functional-programming f# fft
functional-programming f# fft
New contributor
New contributor
New contributor
asked 7 hours ago
mribrainguy
111
111
New contributor
New contributor
I have no knowledge of F# and I'm asking this only out of curiosity: is this idiomatic F#?
– chb
7 hours ago
1
Is the indentation correct? From looking at the code I have a feeling yourbottomLoop
is never called…
– dumetrulo
6 hours ago
add a comment |
I have no knowledge of F# and I'm asking this only out of curiosity: is this idiomatic F#?
– chb
7 hours ago
1
Is the indentation correct? From looking at the code I have a feeling yourbottomLoop
is never called…
– dumetrulo
6 hours ago
I have no knowledge of F# and I'm asking this only out of curiosity: is this idiomatic F#?
– chb
7 hours ago
I have no knowledge of F# and I'm asking this only out of curiosity: is this idiomatic F#?
– chb
7 hours ago
1
1
Is the indentation correct? From looking at the code I have a feeling your
bottomLoop
is never called…– dumetrulo
6 hours ago
Is the indentation correct? From looking at the code I have a feeling your
bottomLoop
is never called…– dumetrulo
6 hours ago
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
mribrainguy is a new contributor. Be nice, and check out our Code of Conduct.
mribrainguy is a new contributor. Be nice, and check out our Code of Conduct.
mribrainguy is a new contributor. Be nice, and check out our Code of Conduct.
mribrainguy is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53370357%2ffunctionally-idiomatic-fft%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I have no knowledge of F# and I'm asking this only out of curiosity: is this idiomatic F#?
– chb
7 hours ago
1
Is the indentation correct? From looking at the code I have a feeling your
bottomLoop
is never called…– dumetrulo
6 hours ago